Chapter 5
 "Thermochemistry"

Section 17.1

The Flow of Energy - Heat and Work OBJECTIVES:

- Explain how energy, heat, and work are related.

Section 17.1

The Flow of Energy - Heat and Work OBJECTIVES: - Classify processes as either exothermic or endothermic.

Section 17.1

The Flow of Energy - Heat and Work OBJECTIVES:

- Identify the units used to measure heat transfer.

Section 17.1

The Flow of Energy - Heat and Work OBJECTIVES:

- Distinguish between heat capacity and specific heat.

Energy Transformations

- Thermochemistry - concerned with heat changes that occur during chemical reactions
Energy - capacity for doing work or supplying heat
- weightless, odorless, tasteless
- if within the chemical substancescalled chemical potential energy

Energy Transformations

- Gasoline contains a significant amount of chemical potential energy
Heat - represented by "q", is energy that transfers from one object to another, because of a temperature difference between them.
- only changes can be detected!
- flows from warmer \rightarrow cooler object

Exothermic and Endothermic Processes

- Essentially all chemical reactions, and changes in physical state, involve either:
a) release of heat, or
b) absorption of heat

Exothermic and Endothermic Processes

Δ In studying heat changes, think of defining these two parts:

- the system - the part of the universe on which you focus your attention
- the surroundings - includes everything else in the universe

Exothermic and Endothermic Processes

- Together, the system and it's surroundings constitute the universe

Thermochemistry is concerned with the flow of heat from the system to it' s surroundings, and vice-versa.

Exothermic and Endothermic Processes

- The Law of Conservation of Energy states that in any chemical or physical process, energy is neither created nor destroyed.
- All the energy is accounted for as work, stored energy, or heat.

Exothermic and Endothermic Processes

$\stackrel{H e a t ~ f l o w i n g ~ i n t o ~ a ~ s y s t e m ~ f r o m ~ i t ' s ~}{\text { ' }}$ surroundings:

- defined as positive
- q has a positive value
- called endothermic
-system gains heat as the surroundings cool down

Exothermic and Endothermic Processes

- Heat flowing out of a system into it's surroundings:
- defined as negative
- q has a negative value
- called exothermic
-system loses heat as the surroundings heat up

Exothermic and Endothermic

\diamond Fig. 17.2, page 506 - on the left, the system (the people) gain heat from it's surroundings (the fire)

- this is endothermic
\checkmark On the right, the system (the body) cools as perspiration evaporates, and heat flows to the surroundings
- this is exothermic

Exothermic and Endothermic

- Every reaction has an energy change associated with it ** Gummy Bear Sacrifice **
Exothermic reactions release energy, usually in the form of heat.
- Endothermic reactions absorb energy
- Energy is stored in bonds between atoms

Units for Measuring Heat Flow

1) A calorie is defined as the quantity of heat needed to raise the temperature of 1 g of pure water $1^{\circ} \mathrm{C}$.

- Used except when referring to food
- a Calorie, (written with a capital C), always refers to the energy in food
- 1 Calorie $=1$ kilocalorie $=1000$ cal.

Units for Measuring Heat Flow

2) The calorie is also related to the Joule, the SI unit of heat and energy

- named after James Prescott Joule
- $4.184 \mathrm{~J}=1 \mathrm{cal}$
- Heat Capacity - the amount of heat needed to increase the temperature of an object exactly $1^{\circ} \mathrm{C}$
- Depends on both the object's mass and its chemical composition

Heat Capacity and Specific Heat

 Specific Heat Capacity - the amount of heat it takes to raise the temperature of 1 gram of the substance by $1^{\circ} \mathrm{C}$ (abbreviated "C") - often called simply "Specific Heat" - Note Table 17.1, page 508- Water has a HUGE value, when it is compared to other chemicals

Heat Capacity and Specific Heat

 also $\mathrm{C}=1.00 \mathrm{cal} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)$

- Thus, for water:
- it takes a long time to heat up, and
- it takes a long time to cool off!
\bullet Water is used as a coolant!
- Note Figure 17.4, page 509

Heat Capacity and Specific Heat

\diamond To calculate, use the formula:

$$
\mathrm{q}=\operatorname{mass}(\mathrm{g}) \times \Delta \mathrm{T} \times \mathrm{C}
$$

sheat is abbreviated as "q"
$\Delta \Delta \mathrm{T}=$ change in temperature

- C = Specific Heat
\diamond Units are either $\mathrm{J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$ or cal/(g $\left.{ }^{\circ} \mathrm{C}\right)$

SAMPLE PROBLEM 17.1 - Page 510

Calculating the Specific Heat of a Metal

The temperature of a $95.4-\mathrm{g}$ piece of copper increases from $25.0^{\circ} \mathrm{C}$ to $48.0^{\circ} \mathrm{C}$ when the copper absorbs 849 J of heat. What is the specific heat of copper?

1 Analy List the knowns and the unknown.
Knowns

- $m_{\mathrm{Cu}}=95.4 \mathrm{~g}$
$\bullet \Delta T=\left(48.0^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}\right)=23.0^{\circ} \mathrm{C}$
- $q=849 \mathrm{~J}$
(2) Calculate Solve for the unknown.

Use the knewn values and the definition of specific heat, $C=\frac{q}{m \times \Delta T}$, to alculate the unknown value $C_{C u}$.

$$
C_{\mathrm{Ou}}=\frac{q}{m \times \Delta T}=\frac{849 \mathrm{~J}}{95.4 \mathrm{~g} \times 23.0^{\circ} \mathrm{C}}=0.387 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)
$$

Section 11.2

 Measuring and Expressing Enthalpy Changes OBJECTIVES:- Describe how calorimeters are used to measure heat flow.

Section 11.2

Measuring and Expressing Enthalpy Changes OBJECTIVES:

- Construct
thermochemical equations.

Section 11.2

 Measuring and Expressing Enthalpy ChangesOBJECTIVES:

- Solve for enthalpy changes in chemical reactions by using heats of reaction.

Calorimetry

Calorimetry - the precise measurement of the heat into or out of a system for chemical and physical processes.

- The device used to measure the absorption or release of heat in chemical or physical processes is called a Calorimeter

Calorimetry

\triangleright Foam cups are excellent heat insulators, and are commonly used as simple calorimeters

- Fig. 17.5, page 511
\diamond For systems at constant pressure, the heat content is the same as a property called Enthalpy (H) of the system

A foam cup calorimeter here, two cups are nestled together for better insulation

Calorimetry

-Changes in enthalpy $=\Delta H$
$\Delta q=\Delta H \quad$ These terms will be used interchangeably in this textbook

- Thus, $q=\Delta H=m \times C \times \Delta T$
$\Delta \mathrm{H}$ is negative for an exothermic reaction
$\Delta \Delta H$ is positive for an endothermic reaction

Calorimetry

-Calorimetry experiments can be performed at a constant volume using a device called a "bomb calorimeter" - a closed system

- Used by nutritionists to measure energy content of food

A bomb calorimeter

SAMPLE PROBLEM 17.2 - Page 513

Enthalpy Change in a Calorimetry Experiment

When 25.0 mL of water containing 0.025 mol HCl at $25.0^{\circ} \mathrm{C}$ is added to 25.0 mL of water containing 0.025 mol NaOH at $25.0^{\circ} \mathrm{C}$ in a foam cup calorimeter, a reaction occurs. Calculate the enthalpy change in kJ) during this reaction if the highest temperature observed is $32.0^{\circ} \mathrm{C}$. Assume the densities of the solutions are $1.00 \mathrm{~g} / \mathrm{mL}$.

1 Anals List the knowns and the unknown.

Knowns

- $\mathrm{C}_{\text {water }}-4.18 \mathrm{~J} /\left(\mathrm{g}^{\circ}{ }^{\circ} \mathrm{C}\right)$
- $T_{1}-25.0^{\circ} \mathrm{C}$
- $\mathrm{V}_{\text {final }}-\mathrm{V}_{\mathrm{HCl}}+\mathrm{V}_{\mathrm{NaOH}}$
- $T_{\mathrm{f}}-32.0^{\circ} \mathrm{C}$
- $25.0 \mathrm{~mL}+25.0 \mathrm{~mL}$ - 50.0 mL
- Density ${ }_{\text {solution }}$ - $1.00 \mathrm{~g} / \mathrm{mL}$

Unknown

- $\Delta H-$? kJ

Use dimensional anatysis to determine the mass of the water. You ilmust also calculate $\angle T$. Use $\Delta H=-a_{\text {surr }}=-m \times C \times \Delta T$ to solve for ΔH.
(3) Calculate Solve for the unknewn,

First, calculate the total mass of the water.

$$
m-(50.0 \mathrm{pHE}) \times\left(\frac{1.00 \mathrm{~g}}{\mathrm{IFR}}\right)-50.0 \mathrm{~g}
$$

Now calculate ΔT

$$
\Delta T-T_{\mathrm{f}}-T_{\mathrm{i}}-32.0^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}-7.0^{\circ} \mathrm{C}
$$

Use the values forms. and $A T$ to calculate difi.

$$
\begin{aligned}
\Delta H & =-m \times C \times \Delta T=-(50.0 \mathrm{~g})\left(4.18 \mathrm{~J} /\left(\mathrm{g} \times{ }^{2} E\right)\right)\left(7.0^{2} \mathbb{E}\right) \\
& =-1463 \mathrm{~J}=-1.5 \times 10^{3} \mathrm{~J}=-1.5 \mathrm{~kJ}
\end{aligned}
$$

$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+395 \mathrm{~kJ}$

$\mathrm{C}+\mathrm{O}_{2}$

Reactants

\rightarrow

Products

Exothermic

-The products are lower in energy than the reactants
\diamond Thus, energy is released.
$\Delta H=-395 \mathrm{~kJ}$

- The negative sign does not mean negative energy, but instead that energy is lost.

$\mathrm{CaCO}_{3}+176 \mathrm{~kJ} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

Energy
$\mathrm{CaO}+\mathrm{CO}_{2}$

Reactants

\rightarrow
 Products

Endothermic

-The products are higher in energy than the reactants
Thus, energy is absorbed.
$\Delta \mathrm{H}=+176 \mathrm{~kJ}$

- The positive sign means energy is absorbed

Chemistry Happens in MOLES

Δ An equation that includes energy is called a thermochemical equation
$\rightarrow \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+802.2 \mathrm{~kJ}$

- 1 mole of CH_{4} releases 802.2 kJ of energy.
- When you make 802.2 kJ you also make 2 moles of water

Thermochemical Equations

- A heat of reaction is the heat change for the equation, exactly as written
- The physical state of reactants and products must also be given.
- Standard conditions for the reaction is 101.3 kPa (1 atm.) and $25^{\circ} \mathrm{C}$ (different from STP)
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+802.2 \mathrm{~kJ}$
\checkmark If 10. 3 grams of CH_{4} are burned completely, how much heat will be produced?

10. $3 \mathrm{~g} \mathrm{CH}_{4}\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.05 \mathrm{~g} \mathrm{CH}_{4}}\right)\left(\frac{802.2 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{CH}_{4}}\right)$

Thus, $\Delta H=-514 \mathrm{~kJ}$ for this reaction

SAMPLE PROBLEM 17.3 - Paco_ 516

Using the Heat of Reaction to Calculate Enthalpy Change

Using the thermochemical equation in Figure 17.7b on page 515, calculate the amount of heat (in kJ) required to decompose 2.24 mol $\mathrm{NaHCO}_{3}(\mathrm{~s})$.

1. Analy List the knowns and the unknown.

Knowns

$\cdot 2.24 \mathrm{~mol} \mathrm{NaHCO}_{3}(\mathrm{~s})$ decomposes $\quad \bullet \Delta H=? \mathrm{~kJ}$

- $\Delta \mathrm{H}-129 \mathrm{~kJ}$ (for 2 mol NaHCO 3)

Use the thermochemical equation,

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s})+129 \mathrm{~kJ} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}),
$$

to write a senversion factor relating kilojoules of heat and moles of NaHCO_{3}. Then use the conversion factor to determine ΔH for $2.24 \mathrm{~mol} \mathrm{NaHCO}_{3}$.
(1) Calculate Solve for the unknown.

The thermochemical equation indicates that 129 kJ are needed to decompose $2 \mathrm{~mol} \mathrm{NaHCO}_{3}(s)$. Use this relationship to write the following conversion factor.

$$
\frac{129 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{NaHCO}_{3}(s)}
$$

Using dimensional antalysis, solve for $\mathbf{N H}$.

Summary, so far...

Enthalpy

- The heat content a substance has at a given temperature and pressure
- Can't be measured directly because there is no set starting point
- The reactants start with a heat content
- The products end up with a heat content
- So we can measure how much enthalpy changes

Enthalpy

- Symbol is H
- Change in enthalpy is $\Delta \mathrm{H}$ (delta H)
\diamond If heat is released, the heat content of the products is lower ΔH is negative (exothermic)
- If heat is absorbed, the heat content of the products is higher $\Delta \mathrm{H}$ is positive (endothermic)

Heat of Reaction

- The heat that is released or absorbed in a chemical reaction
- Equivalent to ΔH
$\mathrm{C}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+393.5 \mathrm{~kJ}$
$\mathrm{C}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-393.5 \mathrm{~kJ}$
\diamond In thermochemical equation, it is important to indicate the physical state
$\diamond \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}=-241.8 \mathrm{~kJ}$
$\diamond \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Delta \mathrm{H}=-285.8 \mathrm{~kJ}$

Heat of Combustion

-The heat from the reaction that completely burns 1 mole of a substance:
$-\mathrm{C}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+393.5 \mathrm{~kJ}$
$\bullet \mathrm{C}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-393.5 \mathrm{~kJ}$
-Note Table 17.2, page 517

Section 17.3

Heat in Changes of State

OBJECTIVES:

- Classify the enthalpy change that occurs when a substance melts, freezes, boils, condenses, or dissolves.

Section 17.3

Heat in Changes of State

OBJECTIVES:

- Solve for the enthalpy change that occurs when a substance melts, freezes, boils, condenses, or dissolves.

Heat in Changes of State

\checkmark Molar Heat of Fusion $\left(\Delta \mathrm{H}_{\text {fus }}\right)$ - the heat absorbed by one mole of a substance in melting from a solid to a liquid
$\checkmark \mathrm{q}=$ mass $\times \Delta \mathrm{H}_{\text {fus }} \quad$ (there is no temperature change)
Δ Molar Heat of Solidification $\left(\Delta \mathrm{H}_{\text {solid }}\right)=$ heat lost when one mole of liquid solidifies (or freezes) to a solid
$\triangleleft \mathrm{q}=$ mass $\times \Delta \mathrm{H}_{\text {solid }} \quad$ (no temperature change)

Heat in Changes of State

Heat absorbed by a melting solid is equal to heat lost when a liquid solidifies
-Thus, $\Delta \mathrm{H}_{\text {fus }}=-\Delta \mathrm{H}_{\text {solid }}$
Note Table 17.3, page 522

Heats of Vaporization and Condensation

- When liquids absorb heat at their boiling points, they become vapors.
\checkmark Molar Heat of Vaporization ($\Delta \mathrm{H}_{\mathrm{vap}}$)
= the amount of heat necessary to vaporize one mole of a given liquid.
$\diamond \mathrm{q}=$ mass $\times \Delta \mathrm{H}_{\text {vap }} \quad$ (no temperature change)
- Table 17.3, page 522

Heats of Vaporization and Condensation

\bullet Condensation is the opposite of vaporization.
Δ Molar Heat of Condensation ($\Delta \mathrm{H}_{\text {cond }}$)
= amount of heat released when one mole of vapor condenses to a liquid
$\Delta \Delta \mathrm{H}_{\text {vap }}=-\Delta \mathrm{H}_{\text {cond }}$

Heats of Vaporization and Condensation Note Figure 17.10, page 523
The large values for water $\Delta \mathrm{H}_{\text {vap }}$ and $\Delta \mathrm{H}_{\text {cond }}$ are the reason hot vapors such as steam is very dangerous

- You can receive a scalding burn from steam when the heat of condensation is released!
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}_{\text {cond }}=-40.7 \mathrm{~kJ} / \mathrm{mol}$

Heat of Solution

- Heat changes can also occur when a solute dissolves in a solvent.
\checkmark Molar Heat of Solution $\left(\Delta \mathrm{H}_{\text {soln }}\right)=$ heat change caused by dissolution of one mole of substance
- Sodium hydroxide provides a good example of an exothermic molar heat of solution:

Heat of Solution

$\mathrm{NaOH}_{(\mathrm{s})} \xrightarrow{\mathrm{H}_{2} \mathrm{O}_{(1)}} \mathrm{Na}^{1+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{1-}{ }_{(\mathrm{aq})}$

$$
\Delta H_{\text {soln }}=-445.1 \mathrm{~kJ} / \mathrm{mol}
$$

- The heat is released as the ions separate (by dissolving) and interact with water, releasing 445.1 kJ of heat as $\Delta \mathrm{H}_{\text {soln }}$-thus becoming so hot it steams!

SAMPLE PROBLEM 17.6 - Page 526

Calculating the Heat Change in Solution Formation

How much heat (in kJ) is released when $2.500 \mathrm{~mol} \mathrm{NaOH}(s)$ is dissolved in water?

1) Analy2 List the knowns and the unknown.

Knowns
$\cdot \Delta H_{\text {soln }}=-445.1 \mathrm{~kJ} / \mathrm{mol}$

- amount of $\mathrm{NaOH}(\mathrm{s})$ dissolved $=2.500 \mathrm{~mol}$

Use the heat of solution from the following chemical equation to solve for the amount of heat released (ΔH).

$$
\mathrm{NaOH}(s) \xrightarrow{H 0 马} \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)+445.1 \mathrm{~kJ} / \mathrm{mol}
$$

(2) Calculate Solve for the unknown.

Multiply the number of moles of NaOH by $\Delta \mathrm{SH}_{\text {noln }}$

Section 17.4

Calculating Heats of Reaction
-OBJECTIVES:

- State Hess' s law of heat summation and describe how it is used in chemistry.

Section 17.4

Calculating Heats of Reaction
OBJECTIVES:

- Solve for enthalpy changes by using Hess's law or standard heats of formation.

Hess' s Law

\checkmark If you add two or more
 thermochemical equations to give a final equation, then you can also add the heats of reaction to give the final heat of reaction.
Called Hess' s law of heat summation
Example shown on page 528 for araphite and diamonds

How Does It Work?

1) If you turn an equation around, you change the sign:
\diamond If $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}=-285.5 \mathrm{~kJ}$ then, $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+285.5 \mathrm{~kJ}$ also,
2) If you multiply the equation by a number, you multiply the heat by that number:

- $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+571.0 \mathrm{~kJ}$

3) Or, you can just leave the equation "as is"

Hess' s Law - Procedure Options:
$\diamond 1$. Use the equation as written
2. Reverse the equation (and change heat sign + to -, etc.)
3. Increase the coefficients in the equation (and increase heat by same amount)

- Note sample from page 529

Standard Heats of Formation

- The $\Delta \mathrm{H}$ for a reaction that produces 1 mol of a compound from its elements at standard conditions
\checkmark Standard conditions: $25^{\circ} \mathrm{C}$ and 1 atm.
- Symbol is

The standard heat of formation of an element in it's standard state is arbitrarily set at " 0 "
-This includes the diatomics

Standard Heats of Formation

- Table 17.4, page 530 has standard heats of formation
- The heat of a reaction can be calculated by:
- subtracting the heats of formation of the reactants from the products
$\Delta \mathrm{H}^{\mathrm{o}}=\left(\Delta \mathrm{H}_{\mathrm{f}}^{0}\right.$ Products $)-\left(\Delta \mathrm{H}_{\mathrm{f}}^{0}\right.$ Reactants $)$

SAMPLE PROBLEM 17.7 , PaON_5.31

Calculating the Standard Heat of Reaction

What is the standard heat of reaction $\left(\Delta H^{0}\right)$ for the reaction of $\mathrm{CO}(g)$ with $\mathrm{O}_{2}(g)$ to form CO_{2} (ल) ?

1) Analyz List the knowns and the unknown.

Knowns

(from Table 17.4)

- $\Delta H_{\mathrm{f}}{ }^{0} \mathrm{O}_{2}(g)-0 \mathrm{~kJ} / \mathrm{mol}$ (free element)
- $\Delta H_{\mathrm{f}}{ }^{0} \mathrm{CO}(g)--110.5 \mathrm{~kJ} / \mathrm{mol}$
- $\Delta H_{\mathrm{f}}{ }^{0} \mathrm{CO}_{2}(\mathrm{gl})-393.5 \mathrm{~kJ} / \mathrm{mol}$

Balance the equation of the reaction of $\mathrm{CO}(g)$ with $\mathrm{O}_{2}(g)$ to form $\mathrm{CO}_{2}(\mathrm{~g})$. Then determine ΔH^{0} using the standard heats of formation of the reactants and products.
(2) Calculate Solve for the unknown.

First, write the balanced equation.

$$
2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)
$$

Next, find and add the $\Delta \frac{1}{f}$ ofall of the reactants, taking into account the number of moles of each.

$$
\begin{aligned}
\Delta H_{\mathrm{f}}^{\circ}(\text { reactants }) & -2 \text { mol@@(g) }-\frac{-110.5 \mathrm{~kJ}}{1 \text { mol } \mathrm{O}(\mathrm{~g})}+0 \mathrm{~kJ} \\
& =-221.0 \mathrm{~kJ}
\end{aligned}
$$

Then, find the ΔH_{f}^{O} of the product in a similar way

$$
\Delta H_{\mathrm{r}}^{0} \text { (product) }-2 \text { mole日 }\left(\mathrm{gi} \times \frac{-393.5 \mathrm{~kJ}}{1 \text { moleetgi }}\right.
$$

707.04

Finally, sobe for the unknown

$$
\begin{aligned}
& \Delta H^{\circ}-\Delta H_{\mathrm{f}}^{\circ} \text { (products) }-\Delta H_{\mathrm{f}}^{\mathrm{o}} \text { (reactants) } \\
& \Delta H^{\circ}-(-787.0 \mathrm{~kJ}-(-221.0 \mathrm{~kJ}) \\
& \Delta H^{\circ}--566.0 \mathrm{~kJ}
\end{aligned}
$$

Unknown

- $\Delta H^{0}=? \mathrm{~kJ}$

Another Example

$\triangleleft \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{U}} \mathrm{CH}_{4}(\mathrm{~g})=-74.86 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{U}} \mathrm{O}_{2}(\mathrm{~g})=0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CO}_{2}(\mathrm{~g})=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=-241.8 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \Delta H=[-393.5+2(-241.8)]-[-74.86+2(0)]$
$\Delta \mathrm{H}=-802.4 \mathrm{~kJ}$

End of Chapter 17

