19: Chemical Thermodynamics

OVERVIEW OF THE CHAPTER

19.1Spontaneous Processes

Review: Activation energy (14.5); chemical equilibrium (15.1); first law of thermodynamics (5.2); concept of rate of reaction (14.1).

Learning Goals: You should be able to:

- 1. Define the terms spontaneous and spontaneity and apply them in identifying spontaneous processes.
- 2. Define the terms reversible and irreversible and apply them to identifying reversible and irreversible processes.
- 3. Define the term isothermal.

19.2, 19.3, 19.4, 19.5 Entropy and Second and Third Laws of Thermodynamics

Review: Properties of gases, liquids, and solids (10.1, 11.1); solution processes (13.1); thermodynamic state functions (5.2, 5.3).

Learning Goals: You should be able to:

1. Define the term entropy.

2. Describe how entropy is related to the total number of microstates in a thermodynamic system.

- 3. Describe how the number of microstates is related to the ideas of
- randomness of positions of particles and dispersion of kinetic energy.
- 4. State the second law of thermodynamics.
- 5. Predict whether the entropy change in a given process is positive, negative, or near zero.
- 6. State the third law of thermodynamics.
- 7. Describe how the entropy of a substance changes with increasing temperature and during a phase change.
- 8. Calculate ΔS° for any reaction from tabulated absolute entropy values, S° .

19.5, 19.6, 19.7 Gibbs Free Energy and the Equilibrium State

Review: Enthalpy (5.3); standard state and heat of formation (5.7); equilibrium constant (15.2); reaction quotient (15.6).

Learning Goals: You should be able to:

- 1. Define Gibbs free energy.
- 2. Explain the relationship between the sign of the free-energy change, ΔG and whether a process is spontaneous in the forward direction, at equilibrium, or the reverse process is spontaneous.
- 3. Calculate the standard free-energy change at constant temperature and pressure, ΔG° , for any process from tabulated values for the standard free energies of reactants and products.
- 4. List the usual conventions regarding standard states in setting the values for standard free energies.
- 5. Calculate ΔG° from K and perform the reverse operation.

- 6. Describe the relationship between ΔG and the maximum work that can be derived from a spontaneous process, or the minimum work required to accomplish a nonspontaneous process.
- 7. Calculate the free-energy change under nonstandard conditions.

19.6 The Dependence of Gibbs Free Energy on Temperature

Review: Melting and freezing processes (11.4).

Learning Goals: You should be able to:

- 1. predict how ΔG changes with temperature, given the signs for ΔH and ΔS .
- 2. Estimate ΔG° at any temperature, given ΔS° and ΔH° .