Measurement and Chemical Calculations.

Chapter 3

Measurement and Chemical Calculations

- Very large and very small numbers: exponential notation
- Metric system and SI base units
 - Mass, length, temperature, amount of material
 - Derived units (for other physical properties)
- · Converting between units
- Calculations using dimensional analysis
- Quantifying and communicating uncertainty in measurements
- Significant figures and rounding

Table 3.2 Metric Prefixes*					
Large Units			Small Units		
Metric Prefix	Metric Symbol	Multiple	Metric Prefix	Metric Symbol	Multiple
tera-	Т	1012	Unit (grai	n, meter, liter)	$1 = 10^{0}$
giga-	G	10 ⁹	deci-	d	$0.1 = 10^{-1}$
mega-	М	$1,000,000 = 10^6$	centi-	с	$0.01 = 10^{-3}$
kilo-	k	$1,000 = 10^3$	milli-	m	$0.001 = 10^{-1}$
hecto-	h	$100 = 10^2$	micro-	μ	$0.000001 = 10^{-6}$
deca-	da	$10 = 10^1$	nano-	n	10-9
Unit (gram, meter, liter) $1 = 10^{\circ}$		pico-	р	10-1	

*The most important prefixes are printed in boldface.

It is worth learning these (basic scientific literacy)

These are quantities that are very common in chemistry and biochemistry

Measurement and Chemical Calculations

- Very large and very small numbers: exponential notation
- Metric system and SI base units
 - Mass, length, temperature, amount of material
 - Derived units (for other physical properties)
- Converting between units
- Calculations using dimensional analysis
- Quantifying and communicating uncertainty in measurements
- Significant figures and rounding

Significant figures

- · The uncertain digit is the last digit written
- If the uncertain digit is a zero to the right of the decimal point, that zero must be written
- If the mass of a sample is shown on the display of a balance as 15.10 g, and the balance is accurate to ±0.01 g, the last digit recorded must be zero to indicate the correct uncertainty

