Measurement and Chemical Calculations.

Chapter 3

Measurement and Chemical Calculations

- Very large and very small numbers: exponential notation
- Metric system and SI base units
- Mass, length, temperature, amount of material
- Derived units (for other physical properties)
- Converting between units
- Calculations using dimensional analysis
- Quantifying and communicating uncertainty in measurements
- Significant figures and rounding

Very large and very small

- Numbers in chemistry tend to be much larger, and much smaller, than numbers in "every day life"
- Number of atoms in 12.00 g of carbon 602214179000000000000000
- Length of the bond between two carbon atoms in benzene 0.000000000139 m

- We will express numbers using exponential notation
$-6.02214179 \times 10^{23}$ (Avogadro's Constant)
$-1.39 \times 10^{-10} \mathrm{~m}$

Exponential notation

B^{p}
B = base
p = power
$10^{4}=10 \times 10 \times 10 \times 10=10000$
$10^{-4}=\frac{1}{10^{4}}=\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}=\frac{1}{10000}=0.0001$

We generally use base $10, B=10$
Large and small numbers are written as a.bcd $\times 10^{e}$

one digit before the decimal point

Converting numbers into exponential notation: moving the decimal point

- Convert 724000 into standard exponential notation

We want $7.24 \times 10^{\text {? }}$
one digit before the decimal point

- How far do we need to move the decimal point?
$724000.0 \Longleftrightarrow 7.240000$ moved 5 places left

Answer: 7.24×10^{5}
Reality check - 10^{5} is 100000 - a large number

Converting numbers into exponential notation: moving the decimal point

- Convert 0.000427 into standard exponential notation

We want 4.27×10 ?
one digit before the decimal point

- How far do we need to move the decimal point?
$0.000427 \longrightarrow 00004.27$ moved 4 places right (different direction)

Answer: 4.27×10^{-4}
Reality check - 10^{-4} is 0.0001 - a small number

Exponential notation into "ordinary" decimal form

- Convert 4.71×10^{-4} into "ordinary" decimal form
- Note: it is a negative exponent so this is going to be a very small number (zeros after the decimal point)
- Move the decimal point 4 places to the left

Exponential notation into "ordinary" decimal form

- Convert -7.2×10^{5} into "ordinary" decimal form
- Note: it is a positive exponent so this is going to be a very large number (zeros before the decimal point)
- Move the decimal point 5 places to the right

- Notice that the minus sign for -7.2 stays the same. $-720,000$ is a large negative number

The metric system

- Measurements everywhere in the world, with the exception of the US, Burma and Liberia are made in the metric system
- the tiny island of St. Lucia converted to metric on April 1st 2008
- In the metric system units that are larger, or smaller, than the base unit are multiples of 10
g (grams), kg (kilograms $=\mathrm{g} \times 1000$) for weights m (meters), km (kilometers $=m \times 1000$) for distance

You can convert units by simply "moving the decimal point" and using exponential notation.

SI Units

- SI units are a subset of all metric units
- SI is an abbreviation for the French name for the International System of Units
- The SI system is defined by seven base units

Antoine Lavoisier

Mass kilogram
Length

Temperature
Time
Amount of substance
meter
kelvin
second
mole
Electrical current ampere
Luminous intensity
candela

Large Units			Small Units		
Metric Prefix	Metric Symbol	Multiple	Metric Prefix	Metric Symbol	Multiple
tera-	T	10^{12}	Unit (gram, meter, liter)		$1=10^{0}$
giga-	G	10^{9}	deci-	d	$0.1=10^{-1}$
mega-	M	$1,000,000=10^{6}$	centi-	c	$0.01=10^{-2}$
kilo-	k	$1,000=10^{3}$	milli-	m	$0.001=10^{-3}$
hecto-	h	$100=10^{2}$	micro-	μ	$0.000001=10^{-6}$
deca-	da	$10=10^{1}$	nano-	n	10^{-9}
Unit (gra	, meter, liter)	$1=10^{\circ}$	pico-	p	10^{-12}

*The most important prefixes are printed in boldface.
It is worth learning these (basic scientific literacy)
These are quantities that are very common in chemistry and biochemistry

Mass

- The SI unit of mass is the kilogram, kg
- It is defined as the mass of a platinum-iridium cylinder stored in a vault in France (!)
- It is the only SI unit that is still defined in relation to an artifact rather than to a fundamental physical property that can be reproduced in different laboratories
- A new 1 kg sphere made of silicon is in the works. It will contain 2.15×10^{25} atoms

Length

- The SI unit of length is the meter, m
- It is defined as the distance light travels in a vacuum in 1/299,792,468 second.

Volume

- The SI unit of volume is the cubic meter, m^{3}
- A more practical unit for laboratory work is the cubic centimeter, cm^{3}.

Volume

- One liter (L) is defined as exactly 1000 cubic centimeters
- Volume of a $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ $x 10 \mathrm{~cm}$ box
- One liter of water weighs $1000 \mathrm{~g}=1$ kilogram
- $1 \mathrm{~mL}=0.001 \mathrm{~L}=1 \mathrm{~cm}^{3}$

Temperature

- Fahrenheit Temperature Scale:
- Water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$
- Celsius Temperature Scale:
- Water freezes at $0^{\circ} \mathrm{C}$ and boils at $100^{\circ} \mathrm{C}$
- $\mathrm{T}^{\circ} \mathrm{F}-32=1.8 \times \mathrm{T}^{\circ} \mathrm{C}$

Absolute temperature (kelvin)

- The other temperature scales have arbitary zero points
- Zero on the kelvin scale (0 K) is absolute zero - the lowest temperature possible
- Relationship between kinetic energy, the movement of particles, and temperature (in K)

$$
E_{K}=\frac{1}{2} m v^{2}=\frac{3}{2} k_{B} T
$$

- When the temperature is 0 K , all the particles/atoms in the material are stationary $(\mathrm{v}=0)$
- $\mathrm{TK}=\mathrm{T}^{\circ} \mathrm{C}+273$

Amount of substance

- One mole is the amount of substance of a system which contains as many "elemental entities" (eg, atoms, molecules, ions, electrons) as there are atoms in 12 g of carbon-12: 6.022×10^{23}

1 mole carbon atoms

- You could use the mole as a unit of measurement for amounts of other things
- eggs in SI units?
- Not very practical!

"Derived" units

- The SI units for all other physical property measurement are derived from their relationship to the 7 base units
- Examples
- Common unit for force or weight is the Newton (N)
- SI unit is $\frac{m \times k g}{s^{2}}$ or $m . \mathrm{kg} . \mathrm{s}^{-2}$
- Common unit for pressure is the pascal (Pa), $\mathrm{N} / \mathrm{m}^{2}$
- SI unit is $\frac{\mathrm{kg}}{\mathrm{m} \times \mathrm{s}^{2}}$ or $\mathrm{m}^{-1} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$
- Common unit for energy, heat or work is the joule, (J), Nm
- SI unit is $\frac{m^{2} \times k g}{s^{2}}$ or $m^{2} . \mathrm{kg} . \mathrm{s}^{-2}$

Example: units for density

- The mass and volume of a substance are directly proportional (more mass means more volume!),
$\mathrm{m} \propto \mathrm{V}$
- The proportionality is changed into an equation by inserting a proportionality constant, density

$$
\text { mass }=D \times \text { volume } \quad \text { or } \quad D=\frac{\text { mass }}{\text { volume }}
$$

- The mass per unit volume
- The SI units of density are $\mathrm{kg} / \mathrm{m}^{3}$, but we most often use $\mathrm{g} / \mathrm{cm}^{3}$ or g / mL
- water has a density very close to $1 \mathrm{~g} / \mathrm{cm}^{3}$
- osmium has a density of $22.6 \mathrm{~g} / \mathrm{cm}^{3}$

Example: units for density

- Notice that $1 \mathrm{~kg} / \mathrm{m}^{3} \neq 1 \mathrm{~g} / \mathrm{cm}^{3}$
- $1 \mathrm{~kg}=10^{3} \mathrm{~g}$
- $1 \mathrm{~m}^{3}=100 \times 100 \times 100=10^{6} \mathrm{~cm}^{3}$
- So

$$
\begin{aligned}
& 1 \mathrm{~kg} / \mathrm{m}^{3}=\frac{10^{3} \mathrm{~g}}{10^{6} \mathrm{~cm}^{3}}=10^{-3} \mathrm{~g} / \mathrm{cm}^{3} \\
& 1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Density example calculations

- A piece of wood has a mass of 35 g . If its volume is $7 \mathrm{~cm}^{3}$, What is its density?

$$
\begin{aligned}
\text { Density } & =\frac{\text { mass }}{\text { volume }}=\frac{35 \mathrm{~g}}{7 \mathrm{~cm}^{3}} \\
& =5 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

- Don't forget the units!

Density example calculations
 Solving for mass

- The density of water is $1 \mathrm{~g} / \mathrm{mL}$. What mass does 30 ml of water have?

$$
\begin{aligned}
\text { Mass } & =\text { density } \times \text { volume } \\
& =\frac{1 \mathrm{~g}}{m \mathrm{~m}} \times 30 \mathrm{mat} \\
& =30 \mathrm{~g}
\end{aligned}
$$

- Note that the mL canceled leaving only g, which is the correct unit for mass.

Density example calculations

Solving for volume

- The density of a substance is $7.8 \mathrm{~g} / \mathrm{cm}^{3}$. What volume does 39 g of it take up?

$$
\begin{aligned}
\text { Volume } & =\frac{\text { mass }}{\text { density }}=\frac{39 \mathrm{~g}}{7.8 \mathrm{~g} / \mathrm{cm}^{3}} \\
& =5 \mathrm{~cm}^{3}
\end{aligned}
$$

Dimensional analysis

- A quantitative problem-solving technique featuring algebraic cancellation of units and the use of PER expressions.
- PER: A mathematical statement of two quantities that are directly proportional to one another

How to solve a conversion problem by dimensional analysis

How many days are in 23 weeks?

- Identify and write down the given quantity. Include units.
- Given: 23 weeks
- Identify and write down the units of the wanted quantity
- Wanted: days
- Write down the PER/Path

PER $\quad 7$ days/week
Path \quad weeks \longrightarrow days

How to solve a problem by dimensional analysis

How many days are in 23 weeks?

- Write down the calculation setup

- This gives you the correct answer and the correct units

Dimensional analysis example

How many milliliters are in 0.00339 liter?

GIVEN: 0.00339 L
WANTED: mL
PER: $\quad 1000 \mathrm{~mL} / \mathrm{L}$
PATH: $\mathrm{m} \quad \mathrm{mL}$ $0.00339 \npreceq \times \frac{1000 \mathrm{~mL}}{\npreceq}=3.39 \mathrm{~mL}$

Reality check:
More mL (smaller unit) than L (larger unit). OK.

Dimensional analysis example

How many meters are in 2608 cm ?
GIVEN: 2608 cm
WANTED: m

Reality check:
Less meters (larger unit) than centimeters (smaller unit). OK.

Using non-metric numbers

How many yards are in 2608 inches ?
GIVEN: 2608 inches
WANTED: yards
PER: $\quad \frac{1}{36} \frac{\mathrm{yd}}{\mathrm{in}}$
PATH: in $\xrightarrow{3 d}$
2608 K x $\quad \frac{1 \mathrm{yd}}{36 \text { irf }}=72.444 \mathrm{yd}$
In the metric calculation we just had to move the decimal point two places!

Dimensional analysis example

How many milliliters are in 1.0 quart?
GIVEN: 1.0 qt, WANTED: mL
PER:
PATH: qt

1.0 gh $\mathrm{x} \frac{1 \not L}{1.06 \mathrm{gh}^{\prime}} \times \frac{1000 \mathrm{~mL}}{\not ้}=9.4 \times 10^{2} \mathrm{~mL}$

Reality check:
More mL (smaller unit) than quarts (larger unit). OK All units cancel leaving just mL. OK.

Units for Density

- If you wanted to publish your laboratory results, or to discuss them with non-chemists you might need to convert $\mathrm{g} / \mathrm{cm}^{3}$ into $\mathrm{kg} / \mathrm{m}^{3}$ (SI units)
- There are 1000 g per kg (or 0.001 kg per g)
- There are $1000000 \mathrm{~cm}^{3}$ per m^{3}
- Define the path for the conversion

- Convert the density of lead, $11.4 \mathrm{~g} / \mathrm{cm} 3$ into SI units
$\frac{11.4 g}{-\mathrm{sm}^{2}} \times \frac{0.001 \mathrm{~kg}}{-g} \times \frac{1000000}{\mathrm{~L}} \mathrm{~cm}^{3}=\frac{11400}{\mathrm{~m}^{3}} \mathrm{~kg}$

Measurement and Chemical Calculations

- Very large and very small numbers: exponential notation
- Metric system and SI base units
- Mass, length, temperature, amount of material
- Derived units (for other physical properties)
- Converting between units
- Calculations using dimensional analysis
- Quantifying and communicating uncertainty in measurements
- Significant figures and rounding

Uncertainty in Measurement

- No measurement is exact
- In scientific writing the uncertainty associated with a measured quantity is always included
- By convention, a measured quantity is expressed by stating all digits known accurately plus one uncertainty digit
- We describe the accuracy of a number by saying that it is known to " n " significant figures where " n " is the number of digits that are known accurately, plus one (the last digit, which was estimated)

The bottom board is one meter long. How long is the top board?

More than half as long as the meter stick, but less than one meter-about 6/10 of a meter.

The uncertain digit is the last digit written.
0.6 m

Now the meter stick has marks every 0.1 m, numbered in centimeters. How long is the board?

Between 0.6 m and 0.7 m (with certainty), and the uncertain digit must be estimated.
0.64 m

The measuring device now has centimeter marks.
How long is the board?
0.643 m

Estimating the last digit

The measuring device has millimeter marks.
We could estimate between the millimeter marks, but alignment of the board and the meter stick has an uncertainty of a millimeter or so.

We have reached the limit of this measuring device.
0.643 m

The measurement is accurate to three significant figures

Significant Figures

- The measurement process, not the units in which the result is expressed, determines the number of significant figures
- The length of the board in the previous illustrations was 0.643 m . Expressed in centimeters, it is 64.3 cm
- They are the same measurement with the same uncertainty. Both must have the same number of significant figures
- The location of the decimal point has nothing to do with significant figures
- The same 0.643 m is 0.000643 km . The three zeros before the decimal point are not significant
- Begin counting significant figures at the first nonzero digit, not at the decimal point

Examples

- How many significant figures?

23.5 g	3 significant figures
10400 m	3 significant figures
$0.03679 \mu \mathrm{l}$	4 significant figures
$2.5 \times 10^{-9} \mathrm{~m}$	2 significant figures

Significant figures

- The uncertain digit is the last digit written
- If the uncertain digit is a zero to the right of the decimal point, that zero must be written
- If the mass of a sample is shown on the display of a balance as 15.10 g , and the balance is accurate to $\pm 0.01 \mathrm{~g}$, the last digit recorded must be zero to indicate the correct uncertainty

Rounding a calculated number

- If your calculator provides 10 digits, but the measurement or calculation method only gives an accuracy of 3 significant figures you will need to round your answer
- If the first digit to be dropped is less than 5 , leave the digit before it unchanged

Examples

(round to 3 sig figs)

1.743345975 m	\longrightarrow	1.74 m
0.041237856 kg	\longrightarrow	0.0412 kg

Rounding a calculated number

- If your calculator provides 10 digits, but the measurement or calculation method only gives an accuracy of 3 significant figures you will need to round your answer
- If the first digit to be dropped is 5 or more, increase the digit before it by 1 .

Examples
(round to 3 sig figs)
$32.88 \mathrm{~mL} \quad \longrightarrow \quad 32.9 \mathrm{~mL}$
$0.009776 \mathrm{~km} \longrightarrow 0.00978 \mathrm{~km}$

Using correct significant figures in calculations

The mass of 1.000 L of a gas is 1.436 g , what is the mass of 0.0573 L ?

$$
\begin{aligned}
& \text { GIVEN: } 0.0573 \text { L WANTED: g } \\
& 0.0573 \swarrow \mathrm{x} \quad \frac{1.436 \mathrm{~g}}{1.000 \not L}=0.0822828 \mathrm{~g}
\end{aligned}
$$

But: the volume 0.0573 is only known to 3 significant figures The mass calculated using that volume cannot be more accurate Answer: 0.0823 g

Using correct significant figures in calculations

How many hours are there in 6.924 days?

GIVEN: 6.924 days WANTED: hours
PER:
PATH: days $\frac{24 \text { hours }}{\text { day }}$ hours
6.924 days $\times \frac{24 \text { hours }}{1 \text { dáy }}=166.2$ hours
There are exactly 24 hours in one day. Exact numbers are infinitely significant. They never limit the \# sig. figs. Check: numbers of hours larger than number days, OK

Significant figure rule for multiplication and division

- Note which number in the calculation has the smallest number of significant figures
- Round off the answer to the same number of significant figures
- Example: calculate the volume of a box that is 34.49 cm long, 23.0 cm wide, and 15 cm high

Volume $=$ length x width x height

$$
=34.39 \mathrm{~cm} \times 23.0 \mathrm{~cm} \times 15 \mathrm{~cm}
$$

4 s.f. $\quad 3$ s.f. 2 s.f
Numerical answer $=11,899.05 \mathrm{~cm}^{3}$ Note units Round to 2 s.f. $=1.2 \times 10^{4} \mathrm{~cm}^{3}$

