Chapter 9 "STOICHIOMETRY"

Section 9.1 The Arithmetic of Equations

- OBJECTIVE
-Calculate the amount of reactants required or product formed in a nonchemical process.

Section 9.1 The Arithmetic of Equations

- OBJECTIVE:
-Interpret balanced chemical equations in terms of moles, representative particles, mass, and gas volume at STP.

Section 9.1 The Arithmetic of Equations

- OBJECTIVE:
-Identify the quantities that are always conserved in chemical reactions.

Stoichiometry is somewhat like a recipe when Cooking

- When baking, a recipe is usually used, telling the exact amount of each ingredient.
-If you need more, you can double or triple the amount
- Thus, a recipe is much like a balanced equation.

Stoichiometry is...

- Greek for "measuring elements"

Pronounced "stoy kee ahm uh tree"

- Defined as: calculations of the quantities in chemical reactions, based on a balanced equation.
- There are 4 ways to interpret a balanced chemical equation

\#1. In terms of Particles

- Element= made of atoms
- Molecular compound (made of only nonmetals) = molecules
- Ionic Compounds (made of a metal and nonmetal parts) = formula units (ions)

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

- Two molecules of hydrogen and one molecule of oxygen form two molecules of water.
- $2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$

2 formula units $\mathrm{Al}_{2} \mathrm{O}_{3}$ form 4 atoms Al and 3 molecules O_{2}
Now try this: $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$

\#2. In terms of Moles

- $2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$
- $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
- The coefficients tell us how many moles of each substance
- A balanced equation is a Molar Ratio

\#3. In terms of Mass

- The Law of Conservation of Mass applies
- We can check using moles
- $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

2 moles $\mathrm{H}_{2}\left(\frac{2.02 \mathrm{~g} \mathrm{H}_{2}}{1 \text { mole H }_{2}}\right)=4.04 \mathrm{~g} \mathrm{H}_{2}$

In terms of Mass
 - $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
 2 molés $\mathrm{H}_{2} \mathrm{O}\left(\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \text { mote } \mathrm{H}_{2} \mathrm{O}}\right)=36.04 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
 $$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$
 $$
36.04 \mathrm{~g} \mathrm{H}_{2}+\mathrm{O}_{2}=36.04 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

The mass of the reactants equals the mass of the products.

\#4. In terms of Volume

- At STP, 1 mol of any gas $=22.4 \mathrm{~L}$
- $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
- $\left(2 \times 22.4 \mathrm{LH}_{2}\right)+\left(1 \times 22.4 \mathrm{~L} \mathrm{O}_{2}\right) \rightarrow\left(2 \times 22.4 \mathrm{LH}_{2} \mathrm{O}\right)$
- NOTE: mass and atoms are ALWAYS conserved - however, molecules, formula units, moles, and volumes will not necessarily be conserved!

Practice

- Show that the following equation follows the Law of Conservation of Mass (show the atoms balance, and the mass on both sides is equal)

$$
2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}
$$

Section 9.2 Chemical Calculations

- OBJECTIVE
-Construct mole ratios from balanced chemical equations, and apply these ratios in mole-mole stoichiometric calculations.

Section 9.2 Chemical Calculations

- OBJECTIVE
-Calculate stoichiometric quantities from balanced chemical equations using units of moles, mass, representative particles, and volumes of gases at STP.

Mole to Mole conversions

- $2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$
- each time we use 2 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ we will also make 3 moles of O_{2}
$\left(\frac{2 \text { moles } \mathrm{Al}_{2} \mathrm{O}_{3}}{3 \text { mole } \mathrm{O}_{2}}\right)$ or $\left(\frac{3 \text { mole } \mathrm{O}_{2}}{2 \text { moles } \mathrm{Al}_{2} \mathrm{O}_{3}}\right)$
These are the two possible conversion factors

Mole to Mole conversions

- How many moles of O_{2} are produced when 3.34 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ decompose?
- $2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$

$$
3.34 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}\left(\frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}\right)=5.01 \mathrm{~mol} \mathrm{O}_{2}
$$

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

- If 3.84 moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ are burned, how many moles of O_{2} are needed? (9.6 mol)
-How many moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ are needed to produce 8.95 mole of $\mathrm{H}_{2} \mathrm{O}$? (8.95 mol)
-If 2.47 moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ are burned, how many moles of CO_{2} are formed? (4.94 mol)

How do you get good at this? practicell

Calculating Stoichiometric Problems

1. Balance the equation.
2. Convert mass in grams to moles.
3. Set up mole ratios.
4. Use mole ratios to calculate moles of desired chemical.
5. Convert moles back into grams, if necessary.

Mass-Mass Problem:

6.50 grams of aluminum reacts with an excess of oxygen. How many grams of aluminum oxide are formed?

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

$(6.50 \times 2 \times 101.96) \div(26.98 \times 4)=12.3 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$

Another example:

- If 10.1 g of Fe are added to a solution of Copper (II) Sulfate, how much solid copper would form?
- $2 \mathrm{Fe}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Cu}$

$$
\text { Answer }=17.2 \mathrm{~g} \mathrm{Cu}
$$

Volume-Volume Calculations:

- How many liters of CH_{4} at STP are required to completely react with 17.5 L of O_{2} ?
- $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$17.5 \mathrm{~L} \mathrm{O}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{22.4 \mathrm{LO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{2 \mathrm{~mol} \mathrm{O}_{2}}\right)\left(\frac{22.4 \mathrm{~L} \mathrm{CH}_{4}}{1 \mathrm{~mol} \mathrm{CH}_{4}}\right)$
$\uparrow=8.75 \mathrm{LCH}_{4} \uparrow$
Notice anything concerning these two steps?

Avogadro told us:

- Equal volumes of gas, at the same temperature and pressure contain the same number of particles.
- Moles are numbers of particles
- You can treat reactions as if they happen liters at a time, as long as you keep the temperature and pressure the same.

1 mole = 22.4 L @ STP

Shortcut for Volume-Volume:

- How many liters of CH_{4} at STP are required to completely react with 17.5 L of O_{2} ?
- $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$17.5 \mathrm{~L} \mathrm{O}_{2}\left(\frac{1 \mathrm{LCH}_{4}}{2 \mathrm{~L} \mathrm{O}_{2}}\right)=8.75 \mathrm{LCH}_{4}$
Note: This only works for Volume-Volume problems.

Section 9.3
 Limiting Reagent \& Percent Yield

- OBJECTIVE:
-Identify the limiting reagent in a reaction.

Section 9.3

Limiting Reagent \& Percent Yield

- OBJECTIVE:
-Calculate theoretical yield, percent yield, and the amount of excess reagent that remains unreacted given appropriate information.

"Limiting" Reagent

- If you are given one dozen loaves of bread, a gallon of mustard, and three pieces of salami, how many salami sandwiches can you make?
- The limiting_reagent is the reactant you run out of first.
- The excess_reagent is the one you have left over.
- The limiting reagent determines how much product you can make

Limiting Reagents

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g})=16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

How do you find out which is limited?

- Do two stoichiometry problems.
- The one that makes the least amount of product is the limiting reagent.
- If 10.6 g of copper reacts with 3.83 g sulfur, how many grams of product (copper (I) sulfide) will be formed?
- $2 \mathrm{Cu}+\mathrm{S} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}$

Another example:

- If 10.3 g of aluminum are reacted with 51.7 g of CuSO_{4} how much copper (grams) will be produced?
- How much excess reagent will remain?

The Concept of:

A little different type of yield than you had in Driver's Education class.

What is Yield?

- The amount of product made in a chemical reaction.
- There are three types:

1. Actual yield- what you get in the lab when the chemicals are mixed
2. Theoretical yield- what the balanced equation tells should be made
3. Percent yield $=\frac{\text { Actual }}{\text { Theoretical }} \times 100 \%$

Example:

- 6.78 g of copper is produced when 3.92 g of Al are reacted with excess copper (II) sulfate.
- $2 \mathrm{Al}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Cu}$
- What is the actual yield?
- What is the theoretical yield?
- What is the percent yield?

Details on Yield:

- Percent yield tells us how "efficient" a reaction is.
- Percent yield can not be bigger than 100 \%.
- Theoretical yield will always be larger than actual yield!
- Due to impure reactants; competing side reactions; loss of product in filtering or transferring between containers; measuring

End of Chapier 9

